-
- M,) . ¥ W v
; X . - . -
. . s By e - T I
‘ - LAY - o ;
3 -
. .‘. o * . - i
. L - K . v . - g L II II.
v a) \ : 'K g '
+ ' LS ! % {)
d ‘ : ‘ I |
:) » 2 B " I
. . - - i - : -' : %)
- I . K | ‘
- ; .
s * : : |
: W) + 2 : ; ’. . «
N i . - I : : : I
- ¥ : ! I
" - s . . . = 3 ; ' w1k b
v @ . 5 X 2 : ; ‘
: : : . g . AT i o o . .
& ik TR ; . ek TRBE Y- “ " . :
- : I ;
L 1Y F- . - g . " 0 - : ! % N)
H H, :) e . I |
v ! e : ¥ LN . : : 0, ;)
'. : . . ‘ -] ¢ L - N % -
&) : by . . \ i ' ia
L il . . . s ; 3 .
e b . A L v » T " b1 W C
- . 0 LAY v i v '\'. . i . I. i
L3 $: -
i - ¥ v 3 : . : s |
:) : : . L] [‘v
. oy e > : 3 et
'Y N g " - - 4 ; by . g : :
N C - " : . I I
. . b F) “
L y ‘
-, L . " ! ¢ . ’ B : ; |
- % '_\ [y ; ; ; Yy : ‘a l
] " 1' i y k :
: i ' I ; S : - . L Pl .
: : I 4 1 g @ .} . i -
N . I
. . . ! :
¢ & : l l' ‘t. J
L ‘ 35 : ‘
B! - N 4=t "
+ . . - % . :
A : .
% . : . i
" ! :
J ", ! : y
] v - .
. ﬁ 2 ' ‘
. .
i - g
., ' ; | I
; &] .l -
A ; v‘ ; I
3 i
| F e . WA 2 o
| : i :
H . : ‘
. El . . - 9 r i) .“
L . T = : .
. P r “ iy :) i :
[s ¥ \ ’ y ; ;
; ¥, = t . ¥ . - t
T o . . nl EMnx | | |
- = B G L) - e . . o b ' S . i k : “.
3 iy, ! L . IR MR S . * i
g iy e i ..l.. i ; - 2 § 3 ot CEN o
; ; : Il e : = 2 Ay RO, : - o
» . ! . . v . % -5 . . o ; : : : : B
- . . - et 2 ‘ a0) :
v L] i » . T d y : ' S 2
- " - L 4 by ’ oy / k . ul | & . g !
h . L i wy ! . y : - I :
* . o . - = . I i : I
» . - L. " L - & o '.' Y 1]
* * - LA ¥ - - ¥ ket gL) 4 ; ! I
- ‘. a & L] s . - . ¥ ¥ Ly ; l 2 :
%! v . , . : i % . B . : f
" 1 .y Y _ . Pl . 4) % - ‘ '
' { R] : ?_I-; M . - ; 4 . ‘ L
5 . -y & i LES - 1 T oy i y ‘ -
- e * ¥ - at - ‘ o X 1
» > e 2) I ; I |
= , >] 1 -n . ; . .]
» b ~e ‘ 5= Bt b AT ’ 3 : | .
l : : % bl : :) ; i . . s : " i
' ; 2 : w1 ¥
- L - 1 i i -) g - : . ‘
1 . 4 ok I - ‘ I
. . = . e o [o 4 F N ; ! ;
h it . : L . f : L Ve Py - 3 Y .
';' . - : : . . | .
: g #
U ' ; \
» " : . “ ! ; .
- - . & - . - i . - 1 o2 ’ : . ..
- - ; it I ;s - .
A o = * u L - v £ - : “ . I II l ‘
: % ‘ : s gy . y v
. . . . - e o c 1 I : ‘ ; :
3 oY g : ; = & J 3 b M B
4 L Rl o " : -
5 o e Y ot o i ; ¥ :
s '-. o . e o 2 - o : X i 3 :- : R
» L -l L X ¥ - % : . . | . : - :
i = ’ ' . " ; - ¥ : : 3 : :
. F 4 _' ' Wy N - " N . : o T
% PREPARED BY o At *PRE TRDL RO o iahs 2 g i i
- -. a vil .) : : . iy " - . Ia
3 5 J . a . * i 3 .
- . ¥ - . * : g "t . .
: Saulldlty ey et o ApeMax e R
o Iy "_ - TR () - . 1 4] 4, ’ 7 - . B ;
. 2 - L v T e TN : . & - L w g el
I_ - w @ - * g ¥ - - - 7 i ey -
‘ e - K - : : 3 #d
- - e .- - o o & 3 “ :
. k : ; - : : -
. % . L ‘I - 5 T g = 3 P : :)
. e b . o hy -I A k H
: s ¥ . . PR % 3 i : ‘ l .
: A ‘ . - T
- ..' ;
- 3 ;
? » J ~ 1 i g ‘
- v ; : : ‘
|- - é L] L] - iz : : ; :
' - W .‘l

c023

SAULIDITY

SECURITY

REPORT

RN .
'*S. Smart Contract saulidity.com
L 25 7 Audit ® Saulidity
R, ¥ @Saulidity

DISCLAIMER

This report does not constitute financial advice, and Saulidity is
not accountable or liable for any negative consequences
resulting from this report, nor may Saulidity be held liable in
any way. You agree to the terms of this disclaimer by reading
any part of the report. If you do not agree to the terms, please
stop reading this report immediately and delete and destroy
any and all copies of this report that you have downloaded
and/or printed. This report was entirely based on information
given by the audited party and facts that existed prior to the
audit. Saulidity and/or its auditors cannot be held liable for any
outcome, including modifications (if any) made to the
contract(s) for the audit that was completed. No modifications
have been made to the contract(s) by the Saulidity team unless
it is indicated explicitly. The audit does not include the project
team, website, logic, or tokenomics, but if it does, it will be
indicated explicitly. The security is evaluated only on the basis
of smart contracts only. There were no security checks
performed on any apps or activities. There has not been a
review of any product codes. It is assumed by Saulidity that the
information and materials given were not tampered with,
censored, or misrepresented. Even if this report exists and
Saulidity makes every effort to uncover any security flaws, you
should not rely completely on it and should conduct your own
independent research. Saulidity hereby excludes all liability and
responsibility, and neither you nor any other person shall have
any claim against Saulidity, for any amount or kind of loss or
damage that may result to you or any other person or any kind
of company, community, association and institution. Saulidity
is the exclusive owner of this report, and it is published by
Saulidity. Without Saulidity's express written authorization, use
of this report for any reason other than a security interest in the
individual contacts, or use of sections of this report, is
forbidden.

Table of Contents

02 Ssaulidity

03 Introduction

04 Scope

@5 Appendix

06 sc Weakness Registry

09 Audit & Project Information
10 Summary Table

11 Executive Summary

12 Inheritance

15 call Graph

14 Analysis

19 Testing Standards

SAULIDITY AUDIT 1

Saulidity

Saulidity is a renowned cybersecurity firm
specializing in the analysis and development
of Smart contracts. Saulidity, as a full-service
security organization, can help with a variety
of audits and project development.

In a market where confidence and trust are
key, a genuine project may simply increase its
user base enormously with an official audit
performed by Saulidity.

SAULIDITY AUDIT 2

Introduction

For a thorough understanding of the audit, please read
the entire document.

The goal of the audit was to find any potential smart
contract security problems and vulnerabilities.

The information in this report should be used to
understand the smart contract's risk exposure and as a
guide to improving the smart contract's security posture
by addressing the concerns that were discovered.

During our audit, we conducted a thorough inquiry using
automated analysis and manual review approaches.

The security specialists did a complete study
independently of one another in order to uncover any
security issues in the contracts as comprehensively as
feasible. For optimum security and professionalism, all of
our audits are undertaken by at least two independent
auditors.

The project's website, logic, or tokenomics have not been
vetted by the Saulidity team.

SAULIDITY AUDIT 3

Scope

We analyze smart contracts for both well-known
and more specific vulnerabilities.

Here are some of the most well-known
vulnerabilities that are taken into account but
not limited to:

 Reentrancy

« Timestamp Dependence

e Gas Limit and Loops

« DoS with (Unexpected) Throw

« DoS with Block Gas Limit
 Transaction-Ordering Dependence
» Style guide violation

 Transfer forwards all gas

« API violation

« Compiler version not fixed
 Unchecked external call - Unchecked math
« Unsafe type inference

 Implicit visibility level

SAULIDITY AUDIT 4

Appendix

Vulnerabilities can be divided into four threat
levels: Critical, High, Medium and Low. The

classification is mainly based on the impact,
likelihood of utilization and other factors.

Critical flaws can result in the loss of assets or the
alteration of data and are often simple to exploit.

High-level vulnerabilities are challenging to exploit,
but they can have a big influence on how smart
contracts are executed, such as giving the public
access to key features.

Although medium-level vulnerabilities should be
fixed, they generally cannot result in the loss of
assets or the manipulation of data.

Low-level flaws are typically caused by code
fragments that are out-of-date, useless, etc. and
cannot significantly affect execution.

SAULIDITY AUDIT 5

SC Weakness Registry

ITEM DESCRIPTION
Functions and state variables
et ity e
Visibility P y. y

should be specified
consciously.

Integer Overflow and
Underflow

If unchecked math is used, all
math operations should be safe
from overflows and underflows.

Outdated
Compiler
Version

It is recommended to use a
recent version of the Solidity
compiler.

Floating
Pragma

Contracts should be deployed
with the same compiler version
and flags that they have been
tested thoroughly.

Unchecked Call
Return Value

The return value of a message
call should be checked.

Access Control
&
Authorization

Ownership takeover should not
bepossible. All crucial functions
should be protected. Users
could not affect data that
belongs to other users.

Selfdestruct

The contract should not be
destroyed until it has funds
belonging to users.

Check-Effect-Interaction

CEl pattern should be followed
if the code performs any
external call.

SAULIDITY AUDIT

SC Weakness Registry

ITEM

DESCRIPTION

Uninitialized Storage Pointer

Storage type should be set
explicitly if
the compiler version is < 0.5.0.

Assert Violation

Properly functioning code
should never
reach a failing assert statement.

Deprecated Solidity Functions

Deprecated built-in functions
should
never be used.

Delegatecall to Untrusted
Callee

Delegatecalls should only be
allowed to
trusted addresses.

Denial of Service

Execution of the code should
never be
blocked by a specific contract
state
unless it is required.

Race Conditions

Race Conditions and
Transactions Order
Dependency should not be
possible.

Authorization through tx.origin

tx.origin should not be used for
authorization.

Block values as a proxy for time

Block numbers should not be
used for
time calculations.

SAULIDITY AUDIT

SC Weakness Registry

ITEM

DESCRIPTION

Signature Unique Id

Signed messages should always
have a
unique id. A transaction hash
should not
be used as a unique id.

Shadowing State Variable

State variables should not be
shadowed.

Weak Sources of Randomness

Random values should never be
generated
from Chain Attributes.

Incorrect Inheritance Order

When inheriting multiple
contracts, especially if they
have identical functions, a
developer should carefully
specify inheritance in the
correct order.

Calls Only to
Trusted Addresses

ALl external calls should be
performed
only to trusted addresses.

Presence of
unused variables

The code should not contain
unused variables if this is not
justified by design.

SAULIDITY AUDIT

Audit &
Project Information

Project Name

Apelllax

Contract Name

Apelllax_Production.sol
BSC
Ox0074E998e03D582108c8168e2a
84A46aaaB42222

[Report ID apSAULGOL 1.2
@ lebsite Apemax.io
- Cont
‘ ontact Apelllax Team
' Contact @ArchieHODL
Information Telegram
Code language Solidity

SAULIDITY AUDIT

Summary Table

SEVERITY FOUND
0
High 0]
Medium 1
2
0
SAULIDITY AUDIT 10

Executive Summary

ALL ISSUES FOUND DURING ANALYSIS WERE REVIEWED, AND FALSE
POSITIVES WERE ELIMINATED. THE FINDINGS ARE PRESENTED IN THE
ANALYSIS SECTION OF THE REPORT.

IT SHOULD BE NOTED THAT ALL FINDINGS HAVE BEEN ACKNOWLEDGED
AND/OR MITIGATED BY THE CLIENT.

SAULIDITY AUDIT 1

Inheritance

ApeMax_Production
Przliz Frstestised:
inisaiz ey
mirn, T 28112 it i byt I, bytead)
wake lokanslurt] 28B4 addioss)
Itk SR A0N 83 UINIE4)
laken_staking_rewardad scdress. uinta) ‘Constanks
oraate_staiing contract(sddres, sddress uint1 §) Privabe Varkablos:
wpdate_contract_owner{uinitd, address) st aidross.
ST CTI0_TawATd) e addeedd
wpciatn_royaios{uintia nt16) foundar 0
withdraw_curmencyjuintd) Tounder_1 Addiasilipgradestis
claim_mirisherial_rowmrds(} Tounder 2 Holpa!, Privits Fungtiof:
enatis_ aridars(bod) Toundar 3 Publc Functions: Centractisddrin)
whitsist_nnisress_ioe_transter[adsvnss, bool) company_walot Fox_inr_range {uint! 28, 5 24, int1 28} sandVaken (001088, H26E)
Baich_creats_staiing_conynciiaderess|] sdsess]]un18]]) peicing_authority Fcemalize_me{unt32 uni32 uniad) TunctienCaliadek e12 bysea]
ot_cortract|unibd) dacimals ubisidy_ w3z} tuncticnGallacdross bybes sirng)
gol_stake|address) founder roward Data Structures Galculat_subsidy_lor_range|uint2 w32 wrE)a) ytas sazes)
Aet_giobal]) EOMpATTY_fewnd eaoulae_ taiuint1 2] RuncteaCaPNh VRS | 00! E83, Lples, W56, 50N |
Privaln Functions: max_prasale_quasity caicuiate,_isbound_feeduint 128, uinti 6 unti 18 tuncticrdaticC abladdran byses)
dsirbule_rwwards{uint} 28} maimum_subsidy fix_royalties{uint16) tunctionStaticCabinddross. bytes siring)
Moifitrs: minesial_teo lary_tuncticaluint1 28 uinl1 28.6164) weefyCalFlosusli rom Target sddress. bool byses sirng)
enly_adiresd_cwnsiladdrei addaual Frdara tes Wl iy FLNG _ BUTNSXIERTN (L1 28, WlSE,] 28, usil) 2B NI B L Ry e 2 i ead) ity Gl [Eosl yle s 3ing)
coniract_axist(uinied) minimum tax rain _revertibytes string)
contnct_unusediaddrass) maimum_isx_rat
wiaka_addross_axists|address) tan_rate_rangs
akn_addravs urusesiacinesy) Aty
Paas_sulficisnt_balanos| wdress unts6) subsity_duration
haa_soiicient_slcwance|sddrens unt2SE) max_subsidy_rale
can_fransler{address addrass)
Privata Variables:
Giokal
Contracts
Simkos
Addtais_To_Contrast
‘Whitekited For Tranafer
transiors alowed

Putiic Functions:

SAULIDITY AUDIT 12

Call Graph

Internal Call
External Call
Defined Contract
Undefined Contract

fix_for_range

calculate_subsidy_for_range subsidy_integral normalize time

calculate_inbound_fees calculate_tax

fix_royalties

delay_function

verify_minting_authorization

SAULIDITY AUDIT 13

Analysis

Issue: Upgradeable Contact

Severity: Note

Location: General

Description: Any upgradable smart contract carries a
certain degree of risk as the process of upgrading the

contract can introduce new vulnerabilities or flaws
that were not present in the original code.

Comment: Remember to protect initialize functions.

The Transparent Proxy Pattern is a method that
enables upgrades to be made directly within the
proxy contract itself. This is achieved by assigning
an administrator role that has the power to
communicate with the proxy contract and change the
address of the referenced logic implementation. If a
user without admin privileges tries to make a
request, it will be routed to the implementation
contract instead.

It's crucial to remember that the proxy admin should
not have any important role in the logic
implementation contract, as they cannot communicate
directly with it. This ensures that the security and
integrity of the implementation contract is not
compromised by the actions of the proxy admin.

SAULIDITY AUDIT 14

Analysis

Issue: Contract owner privileges
Severity: Note
Location: General

Description: The owner has control over these
functions:

e claim_creator_rewards

e update_royalties

e withdraw_currency

e claim_ministerial_rewards

e batch_create_staking_contract
e create_staking_contract

Comment: Access to certain functions can be
dangerous depending on the specific use case, as it
could potentially centralize control and introduce
security risks. To mitigate these-risks, it is
possible to renounce the ownership of the contract
or to ensure that no single party can unilaterally
control these functions with proper access control
mechanisms, time-lock features, multi-signature
requirements, etc.

SAULIDITY AUDIT 15

Analysis

Issue: PRNG
Severity: NMedium
Location: L517-605, L554, L571

Description: Weak PRNG due to a modulo on
block.timestamp, block.number, now or blockhash. These
can be influenced by miners to some extent so they
should be avoided.

if (found_index == false) {
| contract_index = uint64(Global.random_seed % uint256(Global.contract_count));

}

Comment:To improve the randomness and security of
your smart contract'’'s random number generation, it
is recommended to consider alternative methods of
generating random numbers. You can use a verifiable
source of randomness, such as Chainlink VRF, for the
purpose of random number generation.

Status: Acknomledged - See lhitepaper

SAULIDITY AUDIT 16

Analysis

Issue: Tautology or Contradiction
Severity:
Location: L463-480, L466

Description: Unnecessary comparison or superfluous
check.

function withdraw_currency(uint8 currency_index) public onlyOwner {

if (currency_index == 0) {
require(address(this).balance >= 0, "Insufficient balance");
payable(owner()).transfer(address(this).balance);
¥
else if (currency_index == 1) {
IERC20Upgradeable usdt = IERC2@Upgradeable(Constants.usdt_address);
uint256 usdt_balance = usdt.balanceOf(address(this));
require(usdt.transfer{owner(), usdt_balance), "USDT token transfer failed");

}
else if (currency_index == 2} {
IERC20Upgradeable usdc = IERC2@Upgradeable(Constants.usdc_address);
uint256 usdc_balance = usdc.balanceOf(address(this));
require(usdc.transfer(owner(), usdc_balance), "USDC token transfer failed");
}

Comment:It is possible to remove tautological checks
without affecting functionality of a smart contract.

Status: Mitigated

SAULIDITY AUDIT 17

Analysis

Issue: Division before multiplication
Severity:
Location:L304-373, L343-L346, L355-L358

Description: Integer division may result in a
truncation. As a result, executing a multiplication
before division can help to minimize accuracy loss
in some cases.

uint256 rewards =

Stake.amount_staked *
relevant_units /
Constants.decimals;

uint256 nerfed_rewards =
rewards *
(time_elapsed - Stake.delay_nerf) /
time_elapsed;

Global.unclaimed_ministerial_rewards += uintl128(rewards - nerfed_rewards);

Comment: We recommend to rearrange operations to
ensure that multiplication is performed before
division. This can help in minimizing potential
rounding errors or loss of precision, especially
when working with integers.

Status: Acknowledged

SAULIDITY AUDIT 18

Testing Standards

The goal of the audit was to find

any potential smart contract security
problems and vulnerabilities.

The information in this report

should be used to understand the smart
contract’'s risk exposure and

as a guide to improving the smart contract's
security posture by addressing the concerns
that were discovered.

The blockchain platform is used to deploy and
execute smart contracts. The platform, its
programming language, and other smart
contract-related applications all have
vulnerabilities that may be exploited. As a
result, the audit cannot ensure the audited
smart contract(s) explicit security.Audits
can't make statements or warranties on
security of the code.It also cannot be deemed
an adequate assessment of the code's wutility
and safety, bug-free status, or any
statements of the smart contract.While we did
our best in completing the study and
publishing this report, it is crucial to
emphasize that you should not rely only on
it; we advocate all projects doing many
independent audits and participating in a
public bug bounty program to assure smart
contract security.

Testing Standards

1. Gather all relevant data.

2. Perform a preliminary visual
examination of all documents and
contracts.

3. Find security holes with
specialist tools & manual review
with independent experts.

4. Create and distribute a
report.

AL
AP | R
T R
'l:..‘ 3, q:

SAULIDITY

o .
- Smart Contract saulidity.com
Audit ® Saulidity

¥ @Saulidity

